

Project Proposal

Traffic constantly flows between computers connected to the Internet. Large volumes of
information may take a long time traveling from destination to destination. Such a reduction in
speed makes it desirable to compress the file as much as possible in order to send the smallest
amount of data required. Thus, compression of data has allowed for the high-speed data
transfers that have made Internet communication and business more feasible.

In addition to sending the smallest amount of information possible, users also attempt to
maintain a certain level of security upon their information. Due to the fact that common
encryption methods generally manipulate an entire file, most encryption algorithms tend to make
the transfer of information more costly in terms of time and bandwidth. Thus, users pay a price
for security relative to their desired level of security. One possible solution would be a system of
encryption that works cooperatively with the standard compression schemes. Selective
Encryption of only a small percentage of the file’s bits will facilitate this solution. Because most
encryption schemes will make the file larger, selective encryption seeks only to encrypt portions
of the file that will make it unusable. In other words, if a user does not have the proper
decryption device, the file should not be usable. Selective encryption will minimize the
necessary increase in file size due to encryption while maintaining a maximum level of
uselessness, or damage, to the product.

Team ISE (Image Selective Encryption) will deliver a package for selectively encrypting JPEG
(Joint Photographic Experts Group) still image files. The package will provide the tools
necessary to encrypt the critical information of a JPEG file in cooperation with existing standard
compression tools. This package will handle JPEG files in such a way that only a small
percentage of the total file will be encrypted. Selective Encryption security will not extend to the
level of complete encryption, but rather to a level that would deter all but brute force attacks,
allowing users to securely protect private JPEG images.

A JPEG image could be encrypted with any of the sufficiently secure encryption algorithms
available to the open source community, but this can result in an increase in file size or can
require a large amount of processing time. However, by selecting small but vital portions of a
file and encrypting only those few bytes can render an image unusable. The initial statistical
analysis done by the team will consist of specifically breaking down the standard JPEG
compression scheme into its usable parts and evaluate which of the parts, if encrypted, will cause
a potential user to pay for rights to the image or force subscription to the provider service.

An additional aspect of the encryption analysis will be the determination of the specific targets in
the file for encryption. For example in an MPEG file there are headers that contain a small
portion of the overall number of bits but which are extremely vital to the reproduction of the
movie by the user. So, if certain headers were to be encrypted the percentage of the file being
manipulated would be less than ten percent of the total number of bits in the file. Although only
a small portion will be encrypted, the resulting damage experienced by an unauthorized user
would be sufficient to cause the user to pay for the decryption package. However, there are other
targets that, while they can be encrypted and will do sufficient damage, can be guessed by an

 i

attacker. The attacker could, with some degree of effort, render the file useful without use of the
decryption software. For example, if the frame rate of an MPEG file was encrypted, an attacker
could try all three of most common frame rates and one of these is certain to produce the correct
rate for the particular video. In the case of JPEG Selective Encryption, Team ISE will have to
balance the targets for encryption against ease of simple attacks.

A permanent web site will be constructed by the team to make the software package available to
anyone interested in the Team’s project. As it is vital to the world of cryptography to let the
community view the approach, the first form of the working prototype will be made available on
the web site. From this, feedback can be received not only from the team itself, but also from the
cryptography community at large.

So, following the guidelines of the ongoing MPEG research (also being guided by the sponsor),
the team will study the JPEG process and earlier attempts at encryption. With the sponsor’s
assistance, Team ISE will devise a workable approach to handling individual JPEG images
following the concept of selective encryption.

 ii

1. INTRODUCTION ……………………………………………………………………….… 1
2. TEST ENVIRONMENT …………………………………………………………………. 3
3. TESTS ……………………………………………………………………………………... 4
 3.1. Production Code Test ……………………………………………………………... 4
 3.1.1. JPEG_ISE Constructor with Key Only ……………………………………... 4
 3.1.2. JPEG_ISE Constructor with All Parameters …………………………………. 5
 3.1.3. Set_Key Function with Valid Key ……………………………………………... 5
 3.1.4. Set_Key Function with Invalid Key …………………………………………. 6
 3.1.5. Set_Input_File_Name Function with Valid Input File …………………………. 7
 3.1.6. Set_Input_File_Name Function with NULL …………………………………. 7
 3.1.7. Set_Input_File_Name Function with Non-Valid File …………………………. 8
 3.1.8. Set_Output_File_Name Function with Valid Output File ……………………... 9
 3.1.9. Set_Output_File_Name Function with NULL ……..…………………………... 9
 3.1.10. Set_Output_File_Name Function with Non-Valid File ……………………... 10
 3.1.11. Get_Input_File_Name Function When input_file_name != NULL ………..... 11
 3.1.12. Get_Input_File_Name Function When input_file_name == NULL …....... 11
 3.1.13. Get_Output_File_Name Function When input_file_name != NULL ……... 12
 3.1.14. Get_Output_File_Name Function When input_file_name == NULL ……... 12
 3.1.15. Encrypt_File Function Normal Use …………………………………………. 13
 3.1.16. Encrypt_File Function with Invalid Input File ……………………………... 13
 3.1.17. Encrypt_File Function with Output ISE File Name Not Set …………………. 14
 3.1.18. Decrypt_File Function Normal Use …………………………………………. 14
 3.1.19. Decrypt_File Function with Non-Jpeg-Ise Input File ……………………... 15
 3.1.20. Decrypt_File Function with Invalid Input File ……………………………... 15
 3.1.21. Decrypt_File Function with Output File Name Not Set ..……………………. 16
 3.1.22. Decrypt_File Function with Incorrect Key …………………………………. 16
 3.2. Manipulator Test ……………………………………………………………………... 17
 3.2.1. Menu Options …………………………………………………………………. 17
 3.2.2. Button Control Tests …………………………………………………………. 26
 3.2.3. General Tests …………………………………………………………………. 32
 3.3 Web Site Test …………………………………………………………………………. 35
 3.3.1 The Menu Frame Page …………………………………………………………. 35
 3.3.2 The Main Frame Pages …………………………………………………………. 39
4. SUMMARY ……………………………………………………………………………... 45
5. RELATED READINGS …………………………………………………………………. 46

 iii

1. INTRODUCTION

Team ISE is sponsored by Assistant Professor of Computer Science, Tom Lookabaugh, at the
University of Colorado: http://itd.colorado.edu/lookabaugh/. Tom Lookabaugh is currently
involved in selective encryption research on standard MPEG (Moving Picture Experts Group)
files and is interested in researching the application of Selective Encryption for other multimedia
formats.

The goal of selective encryption is to minimize the amount of encryption applied to a file while
maximizing the damage done to the image being viewed by a user not in possession of the
authorized decryption package. Complete encryption is not a requirement of the process, nor is
rendering the file useless to the level of complete military secrecy. It is acceptable for an
attacker to be able to view portions of the file; however, the file should be distorted enough that
an attacker would not wish to use the encrypted file, but would rather purchase or subscribe to
the decryption method for access to the original files.

Multimedia files prove to be good subjects for selective encryption, as these files tend to be very
large and employ compression algorithms that concentrate critical information in small portions
of their bit stream. If the critical data in certain multimedia standards is encrypted properly, the
remaining information becomes useless to those without the appropriate decryptor. There are
many types of compression algorithms that fit this description, such as MPEG 1, 2 and 4 video,
G.723 and G.729 video, AAC audio, MP3 audio, JPEG and JPEG2000 image formats. Applying
a Selective Encryption security solution to selected multimedia formats will greatly increase the
protection level of important information.

The focus of the ISE project is to research and develop an algorithm for selectively encrypting
the JPEG baseline compression image standard. The product of the research and development
will be a package that will encrypt a file so that the amount of the file being encrypted is
relatively small (on the order of 1-2% of the total file). The product will be delivered in a
package that will include an encryptor and a decryptor for JPEG files and a testing suite. A web
site will be constructed to facilitate the delivery of the product and documentation about the
process. The encryptor and decryptor will encrypt and decrypt selected targets contained within
JPEG files. The ISE project will employ the AES (Advanced Encryption Standard) for our
Selective Encryption algorithm. This package will be made available in a purely open source
form on our final web site.

In addition to the package containing the decryptor and encryptor, Team ISE will also provide a
test suite available to prospective users. The test suite will be used to aid in the research,
development and testing of the team’s final product. The test suite will provide the functions
necessary to complete this project. First, it will allow the user to preview a standard JPEG
image. Second, the test suite will break down the various portions of a JPEG image and provide
the ability to manipulate the data in all of the portions. Third, after altering the data in any
particular file, the test suite will provide the capability to preview the encryption attempt without
the benefit of compatible decryption. Forth, the suite will have the ability to decrypt an
encrypted file. The decryption options will allow the user try to defeat the encryption methods.

 1

http://itd.colorado.edu/lookabaugh/

Any selective encryption scheme could be developed using a package that implemented these
features, however, the delivered test suite will only employ the AES encryption scheme chosen
by the team. The test suite will be available to download from the team web site.

The final web site will be deployed on a web server provided by the Sponsor. The machine
facilitating the web server will use the Linux Red Hat 9.0 operating system platform. The team
will acquire a fixed IP address from the proper University of Colorado authorities and will
develop a simple web site capable of delivering information to viewers about the benefits and
application of Selective Encryption technology. The site will provide users the option to
download and use the final software package. The site will also provide links to important
information and will remain in place as long as the sponsor deems necessary.

The final software package will accomplish the complex task of selectively encrypting a JPEG
baseline standard image while providing a simple user interface. Team ISE has identified three
specific types of users: high-end art users, typical Internet image users, and small, low-end
image users. The research and software will be tailored to these users’ needs. Figure 1.1 is a
flow chart showing the general logic design of the team’s final product.

Figure 1.1: Conceptual Overview of ISE Software

This document describes the test plan for the various components of the ISE project, and is used
to verify that the project meets the requirements set forth in the ISE Requirements Document. It
describes the environments, both hardware and software, necessary to test the production code,
Manipulator, and web site. It then proceeds to give a detailed description of the tests themselves.

 2

2. TEST ENVIRONMENT

This section of the text plan document outlines that Environment used to test the ISE Production
Code, the ISE Manipulator, and the ISE web site. The ISE Production Code tests should be
conducted in the following environment:

 Software:

• Any Version of Redhat Linux 9.0 and higher.
• Windows 9x/ME/NT/200x/XP and higher.
• Mac OS X or higher.

 Hardware:
• Generic Color Monitor.
• Mouse as part of the User Interface.
• Keyboard as part of the User Interface.
• Support for a 32-bit processor assembly instructions for AES optimizations.

The ISE Manipulator tests should be conducted in the following environment:

 Software:

• Windows 9x/ME/NT/200x/XP and higher.
• Microsoft .NET Framework Version 1.1 or Higher.

 Hardware:
• Generic Color Monitor.
• Mouse as part of the User Interface.
• Keyboard as part of the User Interface.

The ISE Web Site tests should be conducted in the following environment:

 Software:

• Microsoft Internet Explorer 6.0 or higher.
• Netscape Navigator 6.0 or higher.
• Mozilla 1.5.1 or higher.
• Safari 1.0 or higher.
• Support for HTML version 4.01 transitional.

 Hardware:
• Generic Color Monitor.
• Mouse as part of the User Interface.
• Keyboard as part of the User Interface.

Unless explicitly invoking any instance of the ISE products as part of a test procedure, these tests
assume that an instance of the product is running.

 3

3. TESTS

The tests are organized into three separate sections which deal with the different components of
the ISE project. The sections are:

1. ISE Production Code
2. ISE Manipulator
3. ISE Web Site

Each test in the Test Plan has seven components:

 Purpose The reason for the test.
 Procedure The steps to follow to conduct the test.
 Expected Result The results necessary to pass the test.
 Comments Any comments the tester might have.
 Date Date the test was conducted.
 Tester Name of the person conducting the test.
 Outcome Outcome of the test (Pass or Fail).

 3.1. Production Code Test

This section of the test plan is to outline out all of the testing requirements and desired results
for the ISE Production Code. To test all of the functionality provided by this class, we’ve
have designed a set of tests to cover all of the class methods. These tests were conducted as
outlined in the following sections.

3.1.1. JPEG_ISE Constructor with Key Only

Purpose: The purpose of this test is to determine if a jpeg_ise object

can be created with only an encryption/ decryption key.

Procedure: 1. Create a pointer to a character array in a C++ program
containing the desired key information.
2. Call the jpeg_ise(key) constructor with this key as the
only parameter.

Expected Result: A new object of type jpeg_ise will be created. The key will

be set using the information passed in the parameter. A
default value of NULL will be set for both the input and
output file names.

Comments: In order to use this object for encryption or decryption, the

user must call the set_input_file_name() and
set_output_file_name() functions to set the desired jpeg and
ise files.

 4

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.2. JPEG_ISE Constructor with All Parameters

Purpose: The purpose of this test is to determine if a jpeg_ise object

can be created with an encryption/ decryption key as well
as the input and/or output file name.

Procedure: 1. Create three pointers to character arrays in a C++

program, the first containing the desired key information,
the second containing the input file name and the output
file name.
2. Call the jpeg_ise() constructor with all three pointers as
it’s arguments.

Expected Result: A new object of type jpeg_ise will be created. The key will

be set using the information passed in the first parameter.
The second and third parameters will be used to set the
input and output file names.

Comments: For the input and output file names, one parameter should

be a jpeg file name and the other should be an ise file name,
in either order. The user can verify that the input and
output files were set correctly using the
get_input_file_name() and get_output_file_name()
functions.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

 Outcome: Pass

3.1.3. Set_Key Function with Valid Key

Purpose: The purpose of this test is to determine if a key can be

created with a valid character string.

 5

 Procedure: 1. Create a jpeg_ise object.
2. Create a pointer to a character array in a C++ program
containing one or more characters indicating the desired
key information.
3. Call the set_key() function with this key as the only
parameter.

Expected Result: The encryption/decryption key will be created for the

object using the information in the character array. The
function should return 0 to indicate that the key was
successfully created for the object.

Comments: The key information in the calling program should not be

damaged or modified in any way by this function.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.4. Set_Key Function with Invalid Key

Purpose: The purpose of this test is to determine if the set_key()
function exits gracefully given NULL for the key
information.

Procedure: 1. Create a jpeg_ise object.

2. Create a pointer to a character array in a C++ program
containing NULL, which is invalid for jpeg_ise key
information.
3. Call the set_key() function with this key as the only
parameter.

Expected Result: It should return 1 indicating an invalid key.

Comments: If the object did not contain a valid key previous to this

function call, the function will need to be called again with
a valid key for the object to be used for encryption or
decryption.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

 6

Outcome: Pass

3.1.5. Set_Input_File_Name Function with Valid Input File

Purpose: The purpose of this test is to determine if an input file name

can be created with a valid character string.

Procedure: 1. Create a jpeg_ise object.
2. Create a pointer to a character array in a C++ program
containing the desired input file name with a .jpeg, .jpg, or
.ise extension.
3. Call the set_input_file_name() function with this pointer
as the only parameter

Expected Result: The input file name will be created for the object using the

information in the character array. The function should
return 0 to indicate that the input file name was
successfully created for the object.

Comments: The input file name information in the calling program

should not be damaged or modified in any way by this
function. The input file must exist and be of either ise or
jpeg type.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.6. Set_Input_File_Name Function with NULL

Purpose: The purpose of this test is to determine if the
set_input_file_name() function exits gracefully given
NULL for the file name.

Procedure: 1. Create a jpeg_ise object.

2. Create a pointer to a character array in a C++ program
containing NULL for the input file name.
3. Call the set_input_file_name() function with this pointer
as the only parameter.

 7

Expected Result: The function should exit without setting the jpeg_ise
object’s input file name. It should return 1 indicating an
invalid file name.

Comments: If the object did not contain a valid input file name

previous to this function call, the function will need to be
called again with a valid file name for the object to be used
for encryption or decryption.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.7. Set_Input_File_Name Function with Non-Valid File

Purpose: The purpose of this test is to determine if the
set_input_file_name() function exits gracefully given a
non-valid file for the file name, i.e. the file is of neither
jpeg nor ise type.

Procedure 1. Create a jpeg_ise object.

2. Create a pointer to a character array in a C++ program
containing a non-valid file for the input file name.
Examples of non-valid files are bitmaps, text files, or any
other non-jpeg or non-ise file types.
3. Call the set_input_file_name() function with this pointer
as the only parameter.

Expected Result: The function should exit without setting the jpeg_ise

object’s input file name. It should return 1 indicating an
invalid file name.

Comments: If the object did not contain a valid input file name

previous to this function call, the function will need to be
called again with a valid file name for the object to be used
for encryption or decryption.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 8

3.1.8. Set_Output_File_Name Function with Valid Output File

Purpose: The purpose of this test is to determine if an output file
name can be created with a valid character string.

Procedure: 1. Create a jpeg_ise object.

2. Create a pointer to a character array in a C++ program
containing the desired output file name with a .jpeg, .jpg, or
.ise extension.
3. Call the set_output_file_name() function with this
pointer as the only parameter.

Expected Result: The output file name will be created for the object using the

information in the character array. The function should
return 0 to indicate that the output file name was
successfully created for the object.

Comments: The output file name information in the calling program

should not be damaged or modified in any way by this
function. The output file must exist and be of either ise or
jpeg type.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 3.1.9. Set_Output_File_Name Function with NULL

Purpose: The purpose of this test is to determine if the
set_output_file_name() function exits gracefully given
NULL for the file name.

Procedure: 1. Create a jpeg_ise object.

2. Create a pointer to a character array in a C++ program
containing NULL for the output file name.
3. Call the set_output_file_name() function with this
pointer as the only parameter.

Expected Result: The function should exit without setting the jpeg_ise

object’s output file name. It should return 1 indicating an
invalid file name.

 9

Comments: If the object did not contain a valid output file name
previous to this function call, a default name will be created
during encryption or decryption based on the input file
name.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.10. Set_Output_File_Name Function with Non-Valid File

Purpose: The purpose of this test is to determine if the

set_output_file_name() function exits gracefully given a
non-valid file for the file name, i.e. the file is of neither
jpeg nor ise type.

Procedure: 1. Create a jpeg_ise object.

2. Create a pointer to a character array in a C++ program
containing a non-valid file for the output file name.
Examples of non-valid files are bitmaps, text files, or any
other non-jpeg or non-ise file types.
3. Call the set_output_file_name() function with this
pointer as the only parameter.

Expected Result: The function should exit without setting the jpeg_ise

object’s output file name. It should return 1 indicating an
invalid file name.

Comments: If the object did not contain a valid output file name

previous to this function call, a default name will be created
during encryption or decryption based on the input file
name.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 10

 3.1.11. Get_Input_File_Name Function When input_file_name != NULL

Purpose: The purpose of this test is to determine if the
get_input_file_name() function returns the proper string
indicating the name of the input file.

Procedure: 1. Create a jpeg_ise object with a valid input file.

2. Call the get_input_file_name() function with no
parameters.

Expected Result: The function should return a pointer to a character string

containing the same name as the input file used when
creating the object.

Comments: If the input file is properly set for the jpeg_ise object, then

a valid pointer to the char array will be returned.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 3.1.12. Get_Input_File_Name Function When input_file_name == NULL

Purpose: The purpose of this test is to determine if the
get_input_file_name() function returns NULL when the
input_file_name is equal to NULL.

Procedure: 1. Create a jpeg_ise with key only.

2. Call the get_input_file_name() function with no
parameters.

Expected Result: The function should return NULL.

Comments: If the input file is not explicitly set by the user for the

jpeg_ise object, then the default NULL will be returned.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

 Outcome: Pass

 11

3.1.13. Get_Output_File_Name Function When input_file_name != NULL

Purpose: The purpose of this test is to determine if the
get_output_file_name() function returns the proper string
indicating the name of the output file.

Procedure: 1. Create a jpeg_ise object with a valid output file.

2. Call the get_output_file_name() function with no
parameters.

Expected Result: The function should return a pointer to a character string

containing the same name as the input file used when
creating the object.

Comments: If the output file is properly set for the jpeg_ise object, then

a valid pointer to the char array will be returned.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.14. Get_Output_File_Name Function When input_file_name == NULL

Purpose: The purpose of this test is to determine if the
get_output_file_name() function returns NULL when the
input_file_name is equal to NULL.

Procedure: 1. Create a jpeg_ise object with key only.

2. Call the get_output_file_name() function with no
parameters.

Expected Result: The function should return NULL.

Comments: If the output file is not explicitly set by the user for the

jpeg_ise object, then the default NULL will be returned.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 12

3.1.15. Encrypt_File Function Normal Use

Purpose: The purpose of this test is to determine if the encrypt_file()
function selectively encrypts a jpeg image.

Procedure: 1. Create a jpeg_ise object with a valid key, input jpeg file,

and output ise file.
2. Call the encrypt_file() function with no parameters.

Expected Result: The function should return 0 to indicate success. The

original jpeg image should be undamaged and the ISE file
should contain the encrypted jpeg.

Comments: The function should return 0 to indicate success. The

original jpeg image should be undamaged and the ise file
should contain the encrypted jpeg.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.16. Encrypt_File Function with Invalid Input File

Purpose: The purpose of this test is to determine if the encrypt_file()
function exits gracefully given an input file that does not
exist.

Procedure: 1. Create a jpeg_ise object with a valid key and output ise

file name and a jpeg file name that does not exist.
2. Call the encrypt_file() function with no parameters.

Expected Result: The function should return 1 to indicate that the input jpeg

file could not be opened. The function should then exit
without encrypting any data.

Comments: The output ise file should be empty due to the fact that no

encryption was performed.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 13

 3.1.17. Encrypt_File Function with Output ISE File Name Not Set

Purpose: The purpose of this test is to determine if the encrypt_file()
function calls the make_ise_file_name() function to make a
default output ise file.

Procedure: 1. Create a jpeg_ise object with a valid key and input jpeg

file. Leave the output file name to be the default NULL.
2. Call the encrypt_file() function with no parameters.

Expected Result: The function should call make_ise_file_name() to create an

ise file name based on the input jpeg file name. Encryption
should proceed and return 0 indicating a success.

Comments: The output ise file should be created and named based on

the input jpeg file. This file will contain the encrypted jpeg
file information. If the ise file could not be created for any
reason, this function will return 2.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.18. Decrypt_File Function Normal Use

Purpose: The purpose of this test is to determine if the decrypt_file()
function selectively decrypts an ise image.

Procedure: 1. Create a jpeg_ise object with a valid key, input ise file,

and output jpeg file.
2. Call the decrypt_file() function with no parameters.

Expected Result: The function should return 0 to indicate success. The

original ise image should be undamaged and the new jpeg
file should contain the exact same information as the
original jpeg.

Comments: To test if the image decrypted properly, the user can try to

look at the image. Also, to make sure that there is no
difference between the original and decrypted jpeg images,
the user could run the Unix “diff” command on the two
files.

 14

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 3.1.19. Decrypt_File Function with Non-JPEG-ISE Input File

Purpose: The purpose of this test is to determine if the decrypt_file()
function exits gracefully given an input ise file that is not
an encrypted jpeg image, i.e. the ise file contains a
decrypted mp3 or zip file.

Procedure: 1. Create a jpeg_ise object with a valid key and output jpeg

file name and an ise file name that contains an encrypted
mp3 or zip file.
2. Call the decrypt_file() function with no parameters.

Expected Result: The function should return 5 to indicate that the input file is

not jpeg-ise. The function should then exit without
decrypting any data.

Comments: Due to the fact that the only ise files that exist are all from

jpegs, the tester will have to change the first byte in the ise
to mimic a different ise file type.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

3.1.20. Decrypt_File Function with Invalid Input File

Purpose: The purpose of this test is to determine if the decrypt_file()
function exits gracefully given an input ise file that does
not exist.

Procedure: 1. Create a jpeg_ise object with a valid key and output jpeg

file name and an ise file name that does not exist.
2. Call the decrypt_file() function with no parameters.

 15

Expected Result: The function should return 2 to indicate that the input ise
file could not be opened. The function should then exit
without decrypting any data.

Comments: The output jpeg file should be empty due to the fact that no

decryption was performed.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 3.1.21. Decrypt_File Function with Output File Name Not Set

Purpose: The purpose of this test is to determine if the decrypt_file()
function calls the make_output_file_name() function to
make a default output file.

Procedure: 1. Create a jpeg_ise object with a valid key and input ise

file. Leave the output file name to be the default NULL.
2. Call the decrypt_file() function with no parameters.

Expected Result: The function should call make_output_file_name() to

create an output file name based on the input ise file name.
Decryption should proceed and return 0 indicating a
success.

Comments: The output jpeg file should be created and named based on

the input jpeg file. This file will contain the decrypted jpeg
file information. If the ise file could not be created for any
reason, this function will return 2.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 3.1.22. Decrypt_File Function with Incorrect Key

Purpose The purpose of this test is to make sure that the
decrypt_file() function does not produce a properly
decrypted jpeg image when given an incorrect key.

 16

Procedure: 1. Encrypt a jpeg image and create an ise file with a valid
key
2. Call the set_key() function with a new valid key.
3. Call decrypt_file with the ise file and the new key.

Expected Result: The function should return 0 to indicate that the file was

decrypted. The new jpeg image produced should not be a
valid jpeg image.

Comments: To test that the image did not decrypted properly, the user

can try to look at the new image. Also, the user could run
the Unix “diff” command on the original image and the
new decrypted image to see that there are differences.

Date: March 6, 2004

Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

Outcome: Pass

 3.2. Manipulator Test

This section of the test plan is to list out all of the testing requirements and desired results for
the ISE JPEG Manipulator. To test this massive amount of functionality, this testing breaks
down into three main pieces:

 1. Menu Options
 2. Button Controls
 3. General Tests

The “Menu Options” section will test all of the different menu options available in the
Manipulator, like the “Save Project” or “Open Picture” options that are available. The
“Button Controls” section will test all of the different button control found within the
Manipulator, like “Save Project” or “Update Picture” buttons available on the Project sub-tab
on the Console tab. Finally, the “General Tests” section of this document will test all the rest
of the miscellaneous functionality, like if the SEP project file is set up correctly or to test if
the TextBox controls are working correctly.

 3.2.1. Menu Options

This section of the test plan is to list out the menu functions that need to be tested.
Included in this section is each of the tests, a short description of the test and the expected
results.

 17

 3.2.1.1. File Menu Tests
This section of the test plan is to test all of the File Menu options. Each of the File
Menu options has a test under this section.

 3.2.1.1.1. New Project Menu Option Test

 Purpose: To test the “New Project” menu option to make sure that a new

project is created when this option is selected.

 Procedure: 1. Prior to choosing the “New Project” option, open a new
picture in the Manipulator.
2. Then click the “New Project” menu option under the File
menu.

 Expected Result: All of the old information in the Manipulator should be cleared
out for a new project to be created and they should be
prompted for a new project file name and path.

 Comments: This is not required to make a new project, for instance, you

could just load in a picture and then click the “Save Project”
option and the current information loaded into the Manipulator
will be saved. This option is intended to allow the user to
quickly clear out the Manipulator and start a new project.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.1.2. Open Project Menu Option Test

 Purpose: To test the “Open Project” menu option to make sure that a

previously saved project is loaded into the Manipulator when
this option is selected.

 Procedure: 1. Prior to choosing the “Open Project” option, open a new

picture in the Manipulator.
 2. Change a few values in some of the text controls.

3. Then click the “Open Project” menu option under the File
menu.
4. Choose a valid SEP project file to be loaded by using the
dialog box.

 18

 Expected Result: When the “Open Project” option is selected, the user should be
prompted to first save any previous information. Then, all of
the old information loaded in the Manipulator should be
cleared out for a project being loaded and then all previous
project information should be reloaded properly.

 Comments: This test should probably be completed in conjunction with the

next test, which is the “Save Project” option.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.1.3. Save Project Menu Option Test

 Purpose: To test the “Save Project” menu option to make sure that a

project is saved properly in the SEP file to be stored for future
use.

 Procedure: 1. Prior to choosing the “Save Project” option, open a new

picture in the Manipulator.
 2. Change a few values in some of the text controls.

3. Then click the “Save Project” menu option under the File
menu.
4. Choose a valid name and file path for the SEP project file to
be created.

 Expected Result: When the “Save Project” option is selected, the user should be
prompted to choose a location and file name for the SEP
project file. Then, all of the current information loaded in the
Manipulator should be saved in the project file being created.

 Comments: This test should probably be completed in conjunction with the

next test, which is the “Open Project” menu option.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 19

 3.2.1.1.4. Open Picture Menu Option Test

 Purpose: To test the “Open Picture” menu option to make sure that a

picture and its data are properly loaded into the Manipulator.

 Procedure: 1. Have a valid JPEG image and an invalid JPEG image

available.
 2. Try opening both, one at a time, in the Manipulator

 Expected Result: The valid JPEG should be loaded into the Manipulator with all

the values loaded into the interface, under the proper headings.
The invalid image load attempt should generate an error
message about the file structure.

 Comments: The Manipulator should not discriminate against file name, but

rather the file structure. Even if the file is a valid JPEG but
labeled as .BMP or some other format, the file should still load
properly.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.1.5. Update Picture Menu Option Test

 Purpose: To test the “Update Picture” menu option to make sure that a
picture is generated from the values that are currently loaded in
the Manipulator interface (whether they are user updated or
not).

 Procedure: 1. Load a picture into the Manipulator.
 2. Before changing any values, try making a replica of the

picture by choosing the “Update Picture” menu option.
 3. Then try changing some values in the Manipulator and

choose the “Update Picture” option again.
 4. Using the converted program, convert all 3 files (the original

and the 2 new images) and verify that both the files were
created with information provided in the Manipulator.

 Expected Result: The first picture created should have the exact same values as

original converted picture. The second picture should only
have values that are different from the original where they were
changed/updated in the Manipulator.

 20

 Comments: Only change a few values at first to changed to make sure they

work properly for all the fields.

 Date: March 6, 2004

 Tester: Andrew Pouzeshi

 Outcome: Pass

 3.2.1.1.6. Exit Menu Option Test

 Purpose: To test the “Exit” menu option to make sure that a the user can
properly exit the program.

 Procedure: 1. Load a picture into the Manipulator.
 2. Change a few values, but don’t do anything else.
 3. Be sure NOT to save before hitting the “Exit” option.
 4. Choose the “Exit” menu option.

 Expected Result: Before the application is closed, the user should be prompted to

save the current information. Then, after the user has provided
input, the application should be closed.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.2 Edit Menu Tests

This section of the test plan is to test all of the Edit Menu options. Each of the Edit
Menu options has a test under this section.

 3.2.1.2.1. Copy Menu Option Test

 Purpose: To test the “Copy” menu option to make sure that when text is
selected, we copy it to the system clipboard.

 Procedure: 1. Load a picture into the Manipulator.
 2. Highlight some data values.

 21

 3. Click the “Copy” menu option.
 4. In some other program, like notepad or word, try pasting the

text in.

 Expected Result: The highlighted text in the Manipulator should be pasted to the

new document. Also, the text in the Manipulator should
remain unchanged.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

3.2.1.2.2. Cut Menu Option Test

 Purpose: To test the “Cut” menu option to make sure that the user can
cut text out of a given field and paste it back into another.

 Procedure: 1. Load a picture into the Manipulator.
 2. Highlight some data values.
 3. Click the “Cut” menu option.
 4. In some other program, like notepad or word, try pasting the

text in.

 Expected Result: The highlighted text in the Manipulator should be pasted to the

new document. Also, the text in the Manipulator should be
removed from the text control.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.2.3. Paste Menu Option Test

 Purpose: To test the “Paste” menu option to make sure that the user can
paste text into the different text controls in the Manipulator.

 22

 Procedure: 1. Load a picture into the Manipulator.
 2. Highlight some data values.
 3. Click the “Copy” menu option.
 4. Highlight some other data values.
 5. Click the “Paste” menu option.

 Expected Result: The highlighted text in the Manipulator should be pasted to the

selected text.

 Comments: If for some reason the “Copy” menu won’t work, use <ctrl+c>
button, which is guaranteed to work.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.3. View Menu Tests

This section of the test plan is to test all of the View Menu options. Each of the View
Menu options has a test under this section.

 3.2.1.3.1. Stretch Large Original Menu Option Test

 Purpose: To test the “Stretch Large Original” menu option to make sure
that the user can both stretch and view normally the large
original picture on the Original Picture tab.

 Procedure: 1. Load a picture into the Manipulator.
 2. Click on the Original Picture tab.
 3. Click the “Stretch Large Original” menu option several

times.

 Expected Result: The Large Original image should toggle between stretch mode

and normal mode. Also, when the image is in stretch mode,
there should be a check mark next to the menu option.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 23

3.2.1.3.2. Stretch Large Changed Menu Option Test

 Purpose: To test the “Stretch Large Changed” menu option to make sure
that the user can both stretch and view normally the large
changed picture on the Changed Picture tab.

 Procedure: 1. Load a picture into the Manipulator.
 2. Click on the Changed Picture tab.
 3. Click the “Stretch Large Changed” menu option several

times.

 Expected Result: The Large Changed image should toggle between stretch mode

and normal mode. Also, when the image is in stretch mode,
there should be a check mark next to the menu option.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.3.3. Stretch Small Original Menu Option Test

 Purpose: To test the “Stretch Small Original” menu option to make sure
that the user can both stretch and view normally the small
original picture on the Console tab.

 Procedure: 1. Load a picture into the Manipulator.
 2. Click on the Console Picture tab.
 3. Click the “Stretch Small Original” menu option several

times.

 Expected Result: The Small Original image should toggle between stretch mode

and normal mode. Also, when the image is in stretch mode,
there should be a check mark next to the menu option.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 24

 3.2.1.3.4. Stretch Small Changed Menu Option Test

 Purpose: To test the “Stretch Small Changed” menu option to make sure
that the user can both stretch and view normally the small
changed picture on the Console tab.

 Procedure: 1. Load a picture into the Manipulator.
 2. Click on the Console Picture tab.
 3. Click the “Stretch Small Changed” menu option several

times.

 Expected Result: The Small Changed image should toggle between stretch mode

and normal mode. Also, when the image is in stretch mode,
there should be a check mark next to the menu option.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.1.3.5. Stretch All Menu Option Test

 Purpose: To test the “Stretch All” menu option to make sure that the user
can both stretch and view normally all of the images in one
click.

 Procedure: 1. Load a picture into the Manipulator.
 2. Click the “Stretch All” menu option several times.
 3. Each time you click the “Stretch All” option be sure to check

all of the pictures to make sure they updated correctly.

 Expected Result: The Small Changed image should toggle between stretch mode

and normal mode. Also, when the image is in stretch mode,
there should be a check mark next to the menu option.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 25

 3.2.1.4. About Menu Tests
This section of the test plan is to test all of the About Menu options. Each of the
About Menu options has a test under this section.

 3.2.1.4.1. About Menu Option Test

 Purpose: To test the “About” menu option to make sure that the user can
view the project information and the people associated with the
project.

 Procedure: 1. Click the “About” menu option.

 Expected Result: A new window should open up with the appropriate project

information. This window should close when is it clicked on.

 Comments: Try several times in a row to make sure it works right.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.2. Button Control Tests

This section of the test plan is to list out the menu functions that need to be tested.
Included in this section is each of the tests, a short description of the test and the expected
results.

 3.2.2.1. Project Sub-Tab Button Tests

This section of the test plan is to test all of the buttons on the Project sub-tab. Each of
the buttons on the Project sub-tab has a test under this section.

 3.2.2.1.1. New Project Button Test

 Purpose: To test the “New Project” button to make sure that a new

project is created when this option is selected.

 Procedure: 1. Prior to clicking the “New Project” button, open a new
picture in the Manipulator.
2. Then click the “New Project” button under the Project sub-
tab on the Console tab.

 26

 Expected Result: All of the old information in the Manipulator should be cleared
out for a new project to be created and they should be
prompted for a new project file name and path.

 Comments: This is not required to make a new project, for instance, you

could just load in a picture and then click the “Save Project”
button and the current information loaded into the Manipulator
will be saved. This option is intended to allow the user to
quickly clear out the Manipulator and start a new project.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.2.1.2. Load Project Button Test

 Purpose: To test the “Load Project” menu option to make sure that a

previously saved project is loaded into the Manipulator when
this option is selected.

 Procedure: 1. Prior to clicking the “Load Project” button, open a new

picture in the Manipulator.
 2. Change a few values in some of the text controls.

3. Then click the “Load Project” button located under the
Project sub-tab under the Console tab.
4. Choose a valid SEP project file to be loaded by using the
dialog box.

 Expected Result: When the “Load Project” button is clicked, the user should be
prompted to first save any previous information. Then, all of
the old information loaded in the Manipulator should be
cleared out for a project being loaded and then all previous
project information should be reloaded properly.

 Comments: This test should probably be completed in conjunction with the

next test, which is the “Save Project” button.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 27

 3.2.2.1.3. Save Project Button Test

 Purpose: To test the “Save Project” button to make sure that a project is

saved properly in the SEP file to be stored for future use.

 Procedure: 1. Prior to clicking the “Save Project” button, open a new
picture in the Manipulator.

 2. Change a few values in some of the text controls.
3. Then click the “Save Project” button under the Project sub-
tab under the Console.
4. Choose a valid name and file path for the SEP project file to
be created.

 Expected Result: When the “Save Project” button is clicked, the user should be
prompted to choose a location and file name for the SEP
project file. Then, all of the current information loaded in the
Manipulator should be saved in the project file being created.

 Comments: This test should probably be completed in conjunction with the

next test, which is the “Open Project” button.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.2.1.4. Load Picture Button Test

 Purpose: To test the “Load Picture” button to make sure that a picture

and its data are properly loaded into the Manipulator.

 Procedure: 1. Have a valid JPEG image and an invalid JPEG image

available.
 2. Try opening both, one at a time, in the Manipulator by

clicking on the “Load Picture” button.

 Expected Result: The valid JPEG should be loaded into the Manipulator with all
the values loaded into the interface, under the proper headings.
The invalid image load attempt should generate an error
message about the file structure.

 Comments: The Manipulator should not discriminate against file name, but

rather the file structure. Even if the file is a valid JPEG but

 28

labeled as .BMP or some other format, the file should still load
properly.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.2.1.5. Save Picture Button Test

 Purpose: To test the “Save Picture” button to make sure that a picture

load in the changed picture image boxes are properly saved to
file as a JPEG image.

 Procedure: 1. Open a valid JPEG image in the Manipulator.
 2. Alter a few values and create an image that is not the same,

but still viewable as a JPEG image.
 3. Click the “Save Picture” button located on the Project sub-

tab of the Console tab.

 Expected Result: The viewable JPEG loaded into the Manipulator changed
image boxes should be saved to file. The values saved should
be the values that are currently loaded into the text controls
(except the encoded stream) of the Manipulator.

 Comments: This image should be tested by trying to open the created JPEG

image in a standard image viewer (or multiple viewers for that
matter). This image should be viewable as normal.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.2.1.6. Update Picture Button Test

 Purpose: To test the “Update Picture” button to make sure that a picture

is generated from the values that are currently loaded in the
Manipulator interface (whether they are user updated or not).

 29

 Procedure: 1. Load a picture into the Manipulator.
 2. Before changing any values, try making a replica of the

picture by clicking the “Update Picture” button.
 3. Then try changing some values in the Manipulator and click

the “Update Picture” button again.
 4. Using the converted program, convert all 3 files (the original

and the 2 new images) and verify that both the files were
created with information provided in the Manipulator.

 Expected Result: The first picture created should have the exact same values as

original converted picture. The second picture should only
have values that are different from the original where they were
changed/updated in the Manipulator.

 Comments: Only change a few values at first to changed to make sure they

work properly for all the fields. You may want to use the
converter to convert the images produced hexadecimal to
evaluate the data contained in the image.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

3.2.2.2. Huffman and Quantizer Sub-Tab Button Tests
This section of the test plan is to test all of the buttons on the Project sub-tab. Each of the
buttons on the Project sub-tab has a test under this section.

 3.2.2.2.1. Clear Button Tests

 Purpose: To test the all “Clear” buttons on their corresponding text

controls on both of the Huffman sub-tabs and the Quantizer
sub-tab.

 Procedure: 1. Prior to clicking the “clear” button, open a new picture in the

Manipulator.
2. Try altering text in each for the Huffman tables and
Quantizer tables.
3. Then, for each of the different Quantizer and Huffman table
fields, click the corresponding clear button.

 30

 Expected Result: The corresponding table field should be cleared out. Also,
check to make sure that click one clear doesn’t affect any of the
other text fields.

 Comments: Most images won’t have 4 Quantizer and/or 8 Huffman tables,

so to test the unused fields, simply type some data into the field
and then hit the “Clear” button. Also, if the field hasn’t been
previously altered, then it original data should be moved to the
corresponding original data field.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.2.2.2. Random Button Tests

 Purpose: To test the all “Random” buttons on their corresponding text

controls on both of the Huffman sub-tabs and the Quantizer
sub-tab.

 Procedure: 1. Prior to clicking the “Random” button, open a new picture in

the Manipulator.
2. Try clicking the “Random” button to add a random byte onto
the end of the tables.

 Expected Result: The corresponding table field should have a random byte
appended to the end of it. Also, make sure that if the field has
not been altered previously, that the information be moved to
the corresponding original data TextBox control.

 Comments: Most images won’t have 4 Quantizer and/or 8 Huffman tables,

so to test the unused fields, simply hit the “Random” button, a
byte will still be added to the end of an empty table. Also, if
the field hasn’t been previously altered, then it original data
should be moved to the corresponding original data field.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 31

 3.2.2.2.3. Restore Button Tests

 Purpose: To test the all “Restore” buttons on their corresponding text

controls on both of the Huffman sub-tabs and the Quantizer
sub-tab.

 Procedure: 1. Prior to clicking the “Restore” button, open a new picture in

the Manipulator.
 2. Change some data values in the Manipulator to get the data

input into the corresponding original text field.
3. Try clicking the “Restore” button to restore the originally
loaded data into the corresponding tables.

 Expected Result: The corresponding table field should be restored to the original
value loaded from the image file.

 Comments: Most images won’t have 4 Quantizer and/or 8 Huffman tables,

so to test the unused fields, simply hit the “Restore” button, the
original table will be restored to the corresponding field.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.3. General Tests

This section of the test plan is to test all of the other functions not covered by nay other
section here. Each of the test in this section reflects some piece of the manipulator that
has not previously been tested by any other section in the document.

 3.2.3.1. TextBox Control Test

This section of the test plan is to test all of the TextBox controls found within the
Manipulator. Each of the tests are described in their following section.

 3.2.3.1.1. Changeable TextBox Control Tests

 Purpose: To test the all “TextBox” controls in the Manipulator to make

sure they are working properly.

 Procedure: 1. Open a new picture in the Manipulator.

 32

 2. For each TextBox control that is not “grayed out,” change
some data values. If no data currently exists in the field, then
just try adding some text into the control.

 Expected Result: The data should be entered into the proper TextBox control, if
the control is not “grayed out.” If you encounter a control
where this doesn’t work, please write down the name of each
one.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.3.1.2. Non-Changeable TextBox Control Tests

 Purpose: To test the all non-changeable “TextBox” controls in the

Manipulator to make sure they are working properly.

 Procedure: 1. Open a new picture in the Manipulator.
 2. For each TextBox control that is “grayed out,” try to change

some data values. If no data currently exists in the field, then
just try adding some text into the control.

 Expected Result: The data should NOT be entered into the proper TextBox
control. If you encounter a control where this doesn’t work,
please write down the name of each one.

 Comments: The non-changeable fields aren’t as important as the

changeable ones, but they should still all be checked. This will
ensure that the original data won’t be destroyed, so that the
user can restore it if needed.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 33

 3.2.3.1.3. Generating New JPEG Image Tests

 Purpose: To test to make sure that the new image being created includes

all of the values currently stored in the Manipulator and only
those values.

 Procedure: 1. Open a new picture in the Manipulator.
 2. Try changing a bunch of different values for the picture.
 3. Generate the new picture.
 4. Use the converter to convert the original image and the

newly generated image to an ASCII file and compare all of the
data values.

 Expected Result: The only data that should be changed in the newly generated
image file from the original file is the data that was updated.
Also, this updated data should be reflected in the new file as
well.

 Comments: The Converter should be sufficient to do this, but you may also

want to run the newly generated picture through an image
viewer (if the new image itself is viewable). You should use
the Design document to evaluate whether or not the format of
this file is correct.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.2.3.1.4. Generating New SEP Project File Tests

 Purpose: To test to make sure that the new SEP file being created

includes all of the values currently stored in the Manipulator
and only those values.

 Procedure: 1. Open a new picture in the Manipulator.
 2. Try changing a bunch of different values for the picture.
 3. Generated the new JPEG picture.
 4. Add some project notes into the Project Notes text field.
 5. Then save the SEP project file.
 6. Then open the SEP file in some text processor, like NotePad

or Word. You should be able to see all of the values saved in
this file.

 34

 Expected Result: All of the changed file information should be stored in this file.
Also the path and file name of both the original JPEG image
and the changed JPEG image should be shown here as well.
You should use the Design document to evaluate whether or
not the format of this file is correct.

 Comments: None.

 Date: March 6, 2004

 Tester: Geoffrey Griffith

 Outcome: Pass

 3.3. Web Site Test

This section of the test plan document outlines the series of tests created to test all the
functionality of the ISE Website. The web site test will be broken into the following
categories:

 1. The Menu Frame Page
 2. The Main Frame Pages

The tests and results for both of these categories are compiled in the following sections of
this document.

 3.3.1. The Menu Frame Page

This section of the Test plan outlines tests done on the page Button.html, which appears
in the Menu frame.

 3.3.1.1. The Home Button

Purpose: This test is to verify that the Home button links to the

correct page.

Procedure: Click the Home button on the Menu.

Expected Result: The page Home.html should open in the Main Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

 35

Outcome: Pass

 3.3.1.2. The Project Proposal Button

Purpose: This test is to verify that the Project Proposal button links

to the correct page.

Procedure: Click the Project Proposal button on the Menu.

Expected Result: The document ProjectProposal.pdf should open in the Main

frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.1.3. The Documentation Button

Purpose: This test is to verify that the Documentation button links to

the correct page.

Procedure: Click the Documentation button on the Menu.

Expected Result: The page DocumentIndex.html should open in the Main

Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.1.4. The Project Sponsor Button

Purpose: This test is to verify that the Project Sponsor button links to

the correct page.

 36

Procedure: Click the Project Sponsor button on the Menu.

Expected Result: The page Sponsor.html should open in the Main Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.1.5. The Team Info Button

Purpose: This test is to verify that the Team Info button links to the

correct page.

Procedure: Click the Team Info button on the Menu.

Expected Result: The page Team_ISE.html should open in the Main Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.1.6. The Download Button

Purpose: This test is to verify that the Download button links to the

correct page.

Procedure: Click the Download button on the Menu.

Expected Result: The page Download.html should open in the Main Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

 37

Outcome: Pass

 3.3.1.7. The Links Button

Purpose: This test is to verify that the Links button links to the

correct page.

Procedure: Click the Links button on the Menu.

Expected Result: The page Links.html should open in the Main Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.1.8. The Message Board Button

Purpose: This test is to verify that the Message Board button links to

the correct page.

Procedure: Click the Message Board button on the Menu.

Expected Result: The page index.php should open in the Main Frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 38

 3.3.2. The Main Frame Pages
 This section outlines the tests done on the various pages displayed in the Main frame.

 3.3.2.1. DocumentIndex.html Requirements Button

Purpose: This test is to verify that the Requirements button on the

DocumentIndex.html page functions correctly.

Procedure: Click the Requirements button on the page.

Expected Result: A .pdf reader should open ISEFinalRequirements.pdf file in

the Main frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.2. DocumentIndex.html Prototype Plan Button

Purpose: This test is to verify that the Prototype Plan button on the

DocumentIndex.html page functions correctly.

Procedure: Click the Prototype Plan button on the page.

Expected Result: A .pdf reader should open ISEPrototypePlan.pdf file in the

Main frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.3. DocumentIndex.html Sys Arch Design Button

Purpose: This test is to verify that the Sys Arch Design button on the

DocumentIndex.html page functions correctly.

 39

Procedure: Click the Sys Arch Design button on the page.

Expected Result: A .pdf reader should open

ISESystemArchitectureDesign.pdf file in the Main frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.4. DocumentIndex.html Design Document Button

Purpose: This test is to verify that the Design Document button on

the DocumentIndex.html page functions correctly.

Procedure: Click the Design Document button on the page.

Expected Result: A .pdf reader should open DesignSpecFinal.pdf file in the

Main frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.5. Sponsor.html Project Sponsor Button

Purpose: This test is to verify that the Project Sponsor button on the

Sponsor.html page functions correctly.

Procedure: Click the Project Sponsor button on the page.

Expected Result: The page located at

http://www.cs.colorado.edu/people/tom_lookabaugh.html
should be displayed in the Main frame.

Comments: None.

 40

http://www.cs.colorado.edu/people/tom_lookabaugh.html

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.6. Download.html Production Code Button

Purpose: This test is to verify that the Production Code button on the

Download.html page functions correctly.

Procedure: Click the Production Code button on the page.

Expected Result: The browser should prompt a window asking the user

where they would like to download the zip file code.zip.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.7. Download.html Manipulator Button

Purpose: This test is to verify that the Manipulator button on the

Download.html page functions correctly.

Procedure: Click the Manipulator button on the page.

Expected Result: The browser should prompt a window asking the user

where they would like to download the zip file
manipulator.zip.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

 41

Outcome: Pass

 3.3.2.8. Download.html .NET Framework Button

Purpose: This test is to verify that the .NET Framework button on

the Download.html page functions correctly.

Procedure: Click the .NET Framework button on the page.

Expected Result: The browser should prompt a window asking the user

where they would like to download the file dotnetfx.exe.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.9. Download.html Alpha Test Button

Purpose: This test is to verify that the .NET Framework button on

the Download.html page functions correctly.

Procedure: Click the .NET Framework button on the page.

Expected Result: The browser should prompt a window asking the user

where they would like to download the file dotnetfx.exe.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.10. Links.html www.ijg.org/ Button

Purpose: This test is to verify that the www.ijg.org/ button on the

Links.html page functions correctly.

 42

Procedure: Click the www.ijg.org/ button on the page.

Expected Result: The page located at http://www.ijg.org should be displayed

in the Main frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.11. Links.html rijndael algo Button

Purpose: This test is to verify that the rijndael algo button on the

Links.html page functions correctly.

Procedure: Click the rijndael button on the page.

Expected Result: The page located at

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ should be
displayed in the Main frame.

Comments: None.

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 3.3.2.12. Links.html Project Sponsor Button

Purpose: This test is to verify that the Project Sponsor button on the

Links.html page functions correctly.

Procedure: Click the Project Sponsor button on the page.

Expected Result: The page located at

http://www.cs.colorado.edu/people/tom_lookabaugh.html
should be displayed in the Main frame.

Comments: None.

 43

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
http://www.cs.colorado.edu/people/tom_lookabaugh.html

Date: March 6, 2004

Tester: Andrew Pouzeshi

Outcome: Pass

 44

4. SUMMARY

This document gives a detailed test plan for the ISE Production Code, Manipulator, and the ISE
web site. These tests should be sufficient to prove that the Production Code, Manipulator, and
web site are functioning correctly. All of the results uncovered by the team members during the
alpha testing process have been listed here as well.

 45

5. RELATED READINGS

[Chang and Li 96]

Chang, H. and Li, X. On the Application of Image Decomposition to Image Compression
and Encryption. 1996.

Describes image degradation based on compression and encryption.

[Chang and Li 2000]
 Chang, H. and Li, X. Partial Encryption of Compressed Images and Videos. 2000.

 Describes a partial encryption scheme used on compressed multimedia files.

[Droogenbroek and Benedett 2002]

Droogenbroek, M. and Benedett, R. Techniques for Selective Encryption of
Uncompressed and Compressed Images. 2002.

[Kailasanathan and Naini 2003]

Kailasanathan, C. and Naini, R. Compression Performance of JPEG Encryption Scheme.
2003.

Describes compression performance of JPEG encryption.

[Daigaku and Griffith and Jarchow and Kadhim and Pouzeshi]

Daigaku, S., Griffith, G., Jarchow, J., Kadhim, J. and Pouzeshi A. Requirement
Specification. 2003.

Describes the requirement for Team ISE and for the ISE project.

[Daigaku and Griffith and Jarchow and Kadhim and Pouzeshi]
Daigaku, S., Griffith, G., Jarchow, J., Kadhim, J. and Pouzeshi A. System Architecture.
2003.

Describes the high-level system architecture for the ISE project.

[Li and Knipe and Cheng 97]

Li, X., Knipe, J. and Cheng, H. Image Compression and Encryption Using Tree
Structures. 1997.

Describes compression methods that utilize tree structures.

 46

[Lookabaugh and Sicker and Keaton and Guoand and Vedula 2003]
Lookabaugh, T., Sicker, D., Keaton, D., Guoand, W. and Vedula, I. Security Analysis of
Selectively Encrypted MPEG-e Streams. 2003.

Description of the methods and results of applying selective encryption to MPEG-2
streams.

[Miano 99]

Miano, J. Compressed Image File Formats. Addison Wesley Longman, Inc., Reading,
Massachusetts, 1999.

 Provides a description of the JPEG file format.

[Norcen and Uhl 2003]
 Norcen, R. and Uhl, A. Selective Encryption of the JPEG2000 Bitstream. 2003.

 Describes a selective encryption scheme on JPEG2000 files.

[Pennebaker and Mitchell 93]
 Pennebaker, W. and Mitchell J. JPEG Still Image Data Compression Standard.
 Van Nostrand Reinhold, New York, New York, 1993,

 Provides a thorough description of the JPEG file format and its components.

[Podesser and Schmidt and Uhl 2002]

Podesser, M., Schmidt, H. and Uhl, A. Selective Bitplane Encryption for Secure
Transmission of Image Data in Mobile Environments. 2002.

Describes Bitplane Encryption.

[Seo and Kim and Yoo and Dey and Agrawal 2003]

Seo, Y., Kim, D., Yoo, J., Dey, S., Agrawal, A. Wavelet Domain Imag Encryption by
Subband Selection and Data Bit Selection. 2003.

 Describes Wavelet Domain and Data Bit encryption methods.

 47

	Project Proposal
	1. INTRODUCTION

	Procedure: 1. Create a pointer to a character array in a C+
	2. Call the jpeg_ise(key) constructor with this key as the
	Expected Result: A new object of type jpeg_ise will be crea
	Comments: In order to use this object for encryption or de
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create three pointers to character arrays in
	2. Call the jpeg_ise() constructor with all three pointers
	Expected Result: A new object of type jpeg_ise will be crea
	Comments: For the input and output file names, one paramet
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_key() function with this key as the only pa
	Expected Result: The encryption/decryption key will be crea
	Comments: The key information in the calling program shoul
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_key() function with this key as the only pa
	Expected Result: It should return 1 indicating an invalid k
	Comments: If the object did not contain a valid key previo
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_input_file_name() function with this pointe
	Expected Result: The input file name will be created for the
	Comments: The input file name information in the calling p
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_input_file_name() function with this pointe
	Expected Result: The function should exit without setting t
	Comments: If the object did not contain a valid input file
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_input_file_name() function with this pointe
	Expected Result: The function should exit without setting t
	Comments: If the object did not contain a valid input file
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_output_file_name() function with this point
	Expected Result: The output file name will be created for t
	Comments: The output file name information in the calling
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_output_file_name() function with this point
	Expected Result: The function should exit without setting th
	Comments: If the object did not contain a valid output fil
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object.
	2. Create a pointer to a character array in a C++ program c
	3. Call the set_output_file_name() function with this point
	Expected Result: The function should exit without setting t
	Comments: If the object did not contain a valid output fil
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid input fi
	2. Call the get_input_file_name() function with no parameter
	Expected Result: The function should return a pointer to a
	Comments: If the input file is properly set for the jpeg_i
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise with key only.
	2. Call the get_input_file_name() function with no paramete
	Expected Result: The function should return NULL.
	Comments: If the input file is not explicitly set by the u
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid output
	2. Call the get_output_file_name() function with no paramet
	Expected Result: The function should return a pointer to a
	Comments: If the output file is properly set for the jpeg_
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with key only.
	2. Call the get_output_file_name() function with no paramet
	Expected Result: The function should return NULL.
	Comments: If the output file is not explicitly set by the
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key, in
	2. Call the encrypt_file() function with no parameters.
	Expected Result: The function should return 0 to indicate s
	Comments: The function should return 0 to indicate success
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key and
	2. Call the encrypt_file() function with no parameters.
	Expected Result: The function should return 1 to indicate t
	Comments: The output ise file should be empty due to the f
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key and
	2. Call the encrypt_file() function with no parameters.
	Expected Result: The function should call make_ise_file_nam
	Comments: The output ise file should be created and named
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key, in
	2. Call the decrypt_file() function with no parameters.
	Expected Result: The function should return 0 to indicate s
	Comments: To test if the image decrypted properly, the use
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key and
	2. Call the decrypt_file() function with no parameters.
	Expected Result: The function should return 5 to indicate t
	Comments: Due to the fact that the only ise files that exi
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key and
	2. Call the decrypt_file() function with no parameters.
	Expected Result: The function should return 2 to indicate t
	Comments: The output jpeg file should be empty due to the
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Create a jpeg_ise object with a valid key and
	2. Call the decrypt_file() function with no parameters.
	Expected Result: The function should call make_output_file_
	Comments: The output jpeg file should be created and named
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku
	Procedure: 1. Encrypt a jpeg image and create an ise file w
	2. Call the set_key() function with a new valid key.
	Expected Result: The function should return 0 to indicate t
	Comments: To test that the image did not decrypted properl
	Date: March 6, 2004
	Tester: Joe Jarchow / Joseph Kadhim / Shinya Daigaku

